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WHERE WE LAST LEFT OFF... CS|=:

* Deep learning has dramatically increased accuracy for
computer vision tasks: face recognition, object detection, etc

= Deep learning and other computer vision applications drain
the battery of embedded devices
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THE FORGOTTEN PIPELINE CcSia

* Innovation in deep learning ASIC design continues to
reduce the cost of embedded inference

= Modifications to the image sensor or ISP have been
proposed, but their effect on vision algorithms is unknown
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IMAGE CAPTURE FOR COMPUTER VISION

= Step 1: Determine computer rodare |
vision algorithms’ -
sensitivity to sensor L prote
approximations and ISP e
stage removal :’ =

= Step 2: Use this information _ ;“g;o%;:;g;g
to design a configurable vomamt ||t
pipeline capable of o
capturing images for both Conpresson
humans and vision G|
algorithms 8 | v—
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EVALUATING THE IMPACT OF PIPELINE CHANGES CSi=:

= Nearly all vision datasets consist of human readable images

= To train and test vision algorithms on data created by a
modified pipeline, we need to convert these datasets

= Configurable & Reversible Origina
Imaging Pipeline (CRIP)

 Four stages adapted from Kim
et al.’s reversible pipeline
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 Image sensor noise model
adapted from Chehdi et al.

* Accurate: <1% error — 15
2 R
» Fast: CIFAR-10 in an hour pata Converted
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EVALUATING THE IMPACT OF PIPELINE CHANGES CSi=:

= A wide variety of computer vision algorithms were tested
(including deep learning and traditional techniques)

Algorithm Dataset Vision Task

3 Deep LeNet [30] CIFAR-10 [29] Obj. Classification

20 Deep ResNet [21] CIFAR-10 Obj. Classification

44 Deep ResNet [21] CIFAR-10 Obj. Classification

Faster R-CNN [3§] VOC-2007 [17]  Object Detection

OpenFace [1] CASITA [46] Face Identification
and LFW [24]

OpenCV Farneback [26] Middlebury [40]  Optical Flow

OpenCV SGBM [26] Middlebury Sterco Matching

OpenMVG SfM [35] Strecha [42] Structure from

Motion
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SENSITIVITY TO ISP STAGE REMOVAL



PROPOSED ISP PIPELINE

= Most only need demosaicing and gamma compression
= SGBM also needs denoising

2.6 - Application
g-g = ® LeNet3
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1.8 = @ ResNet44
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DEMOSAICING: CAN WE APPROXIMATE?

* Demosiacing algorithms interpolate color values missing
from the sensor’s filter pattern

* Mobile camera resolution >> Network input resolution
* Why not subsample instead of demosaicing?
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SUBSAMPLE DEMOSAICING RESULTS

= Tests done with non-CIFAR-10 algorithms
= Tested pipeline contains only gamma compression

1.6 Application
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GAMMA COMPRESSION: CAN WE APPROXIMATE? CSI=:

Raw data 04
(lognormal distribution)

e

Tone mapped raw
data
(normal distribution)

JPEG from standard
pipeline
(normal distribution)
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GAMMA COMPRESSION: CAN WE APPROXIMATE? CSI=:
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GAMMA COMPRESSION: USEA LoG ADC

Application
O LeNet3
) ResNet20
) Resheta4
) RCNN
) OpanFace
) Farneback
) SGBM
) OpenMVG
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SYSTEM DESIGN
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CONCLUSIONS CSI=:

1.  All but one application needed only two ISP stages:
demosaicing and gamma compression

2. Our image sensor can approximate the effects of

demosaicing and gamma compression, eliminating the
need for the ISP

3.  Owur image sensor can reduce its bitwidth from 12 to 5 by
replacing linear ADC quantization with logarithmic
quantization
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POWER SAVINGS CSI=:

. Sensor: ~200 mW, ISP: ~150 mW, VPU: ~300mW

. Half of the sensor energy consumption can be saved by
switching from 12 bits to 5 bits

. The entire ISP energy can be saved with power gating

. Our configurable vision mode can save ~40% of the total
system power consumption!
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