
Predictive Synchronization for DVFS-Enabled Multi-Processor Systems 

Mark Buckler†‡, Wayne Burleson†‡

AMD Research, Boxborough, MA.†
University of Massachusetts, Amherst, MA.‡

mark.buckler@amd.com, wayne.burleson@amd.com 

Abstract 
Technology scaling has enabled the number of cores 

within a System on Chip to increase significantly. Globally 
Asynchronous Locally Synchronous (GALS) systems using 
Dynamic Voltage and Frequency Scaling (DVFS) operate 
each of these cores on distinct and dynamic clock domains. 
Typically, the interfaces between these clock domains 
experience multi-cycle latency due to their use of “brute 
force” synchronizers. Improvements in system performance 
can be achieved by replacing these brute force synchronizers 
with predictive synchronizers, which experience less than a 
cycle of latency. Unfortunately, the predictive synchronizers 
proposed so far require high power delay lines, rationally 
related clocks, or over a thousand cycles of latency for every 
change in frequency. Here we present a modified predictive 
synchronizer without these limitations. Our techniques allow 
for uninterrupted data flow during gradual frequency change 
and only a 20 cycle pause in data flow after an instant 
frequency change. In addition, we present an alternative 
clock domain interface which achieves less than a cycle of 
latency with an average 15% reduction in throughput. 

Keywords 
Predictive Synchronizer, Globally Asynchronous Locally 

Synchronous, Dynamic Voltage and Frequency Scaling 

1. Introduction 
Global clocks have been proven to be un-scalable for 

today’s many-core systems, leading to the increase of GALS 
systems such as the one shown in Figure 1. Fine-grained 
DVFS is now used to achieve power savings by dynamically 
tuning each part of the system to its current load. Each of 
these cores operating on different frequencies need to 
communicate, resulting in the need low-latency, high-
throughput, and high reliability inter-clock-domain 
communication. Even Systems on Chip (SoCs) with a 
relatively few number of cores depend on high performance 
communication between clock domains for last-level cache 
access. Examples include AMD’s Bulldozer core systems 
and Intel’s Core i7.  

Communicating across clock domains requires a system 
with flow control to prevent under-running or over-running 
the receiver as well as synchronizer circuits to mitigate the 
risk of metastability (thereby increasing reliability). This 
paper defines any system performing both of these functions 
as a Clock Domain Interface (CDI). The most common kind 
of CDI is an asynchronous FIFO [1]. The full and empty 
signals generated by the FIFO inform the two domains when 
it is possible to transmit or receive, while brute force 
synchronizers pass pointers between the domains. These 
synchronizers contain multiple flip flops connected in series. 

Each additional flip flop reduces the chance for 
metastability, quantified as the Mean Time Between Failures 
(MTBF). Of course, these additional flip flops also add 
latency, resulting in a tradeoff between latency and MTBF. 

Predictive synchronizers transcend this tradeoff, offering 
near perfect MTBF while still maintaining less than a cycle 
of latency. This is achieved by exploiting certain 
relationships between the two clocks to predict their 
behavior. Each predictive synchronizer has limitations of its 
own however. Some designs rely on rationally-related 
clocks and cannot be used with other frequency 
combinations [2][3].  Others depend on large power hungry 
delay lines which are continuously matched to the clock 
period [4]. One system proposed by Dally called the Even 
Odd Predictive Synchronizer (EOPS) overcomes these 
problems, but introduces limitations of its own [5]. The 
EOPS needs certain parameters to be measured before it can 
operate. When clock frequencies change, the system needs 
to stop data flow while it re-measures. Unfortunately, 
measurement relies on the overflow of large counters, 
resulting in a measurement time of over a thousand cycles. 
For systems that apply DVFS frequently, this long stall in 
data flow is unacceptable.  This prevents the use of this 
otherwise robust low-latency synchronizer in practice. 

This paper proposes two techniques to solve this 
problem. The first technique allows for data flow to continue 
uninterrupted during gradual changes in clock frequency. 
The second technique is for systems with frequency changes 
that are too fast to be measured. This solution allows data 
flow to resume less than 20 cycles after a fast frequency 
change instead of the full re-measurement time. To 
demonstrate the wider implications of this work, we also 
propose an alternative CDI which uses these techniques.

Figure 1: Example of a Multi-Processor GALS System [6] 

1.1 The Even Odd Predictive Synchronizer 
Since the DVFS strategies for predictive synchronization 

we propose build on and extend some aspects of the EOPS, 
it is necessary to understand its functionality completely. 
The EOPS leverages the periodic nature of the two clocks to 
estimate the transmit phase from the perspective of the 

978-1-4799-3946-6/14/$31.00 ©2014 IEEE                            270             15th Int'l Symposium on Quality Electronic Design



receive domain. These phase estimates are used to choose 
from one of two flip flops (Even or Odd) to sample in the 
receive domain. Figure 2 shows a high level view of the 
EOPS. Blocks modified by this work are shaded. 

Figure 2: Internal EOPS structure 
Phase estimation is achieved by first taking a digital 

measurement of both the ratio between the two clocks, and 
the size of a “detection interval”. The detection interval 
represents the size of a delay line within a “phase detector” 
circuit.  This alerts the system when two rising edges are 
within the detection region, meaning they are of the same 
phase at that time. Since this information needs to be sent 
through a brute force synchronizer, it is delayed by a certain 
number of receiver clock cycles. 

The system needs current phase estimates however.  This 
can be calculated by multiplying the ratio of the two clock 
frequencies by the number of delayed receiver clock cycles. 
This calculation determines how many transmit clock cycles 
(and fractions of cycles) have occurred since the system 
detected that the two domains were of the same phase. This 
in turn gives a phase estimate for the current receiver clock 
phase, noting that whereas they were within the range of the 
detection interval, they were not exactly of the same phase. 
This results in a level of built-in uncertainty in the phase 
estimate. To define this possible range of phases, upper 
bound and lower bound estimates are calculated by adding 
or subtracting the detection interval from the previous 
calculation [5]. 

2. Predictive Synchronizer DVFS Techniques 
The phase estimation system used in the EOPS allows 

for its large reduction in synchronization latency. To 
function properly, the phase estimation system assumes that 
the value of the measured frequency ratio and detection 
interval remain constant. When DVFS is applied, these 
values need to be re-measured for each change in clock 
frequency. Naturally, this delay in communication for every 
change in frequency is detrimental for systems that apply 
DVFS aggressively at a fine-grain. The following two 
sections present solutions for two scenarios, specifically 
DVFS for gradual frequency change, or for fast (instant) 
frequency change, respectively. 

2.1 Gradual Frequency Change 
There are a number of reasons for gradual frequency 

change. For example, changing certain parameters in phase 
locked loops will result in a slow change in output from the 
previous frequency to the target frequency. Also, increasing 
the speed of a clock with a large distribution tree (such as in 

a large scale GPU) must be done slowly to avoid voltage 
drop in the power supply. Therefore, when gradual 
frequency change does occur, special care must be taken. 
We propose that instead of waiting until clocks have settled 
on their final values to re-measure, the system will measure 
continuously. 

Both the measured frequency ratio and detection interval 
needed for the EOPS are represented as digital fractions. 
These digital fractions have a finite number of bits, meaning 
that their accuracy is limited. This accuracy limitation is 
accounted for in the design by being included when 
calculating the upper and lower bound phase estimations [5]. 
Because the system is built to handle this inaccuracy, 
another perspective would be that there is a certain range 
(the range of inaccuracy) in which the actual values of these 
factors can vary without causing failure in the system. If 
periodic measurement updates were sent to the phase 
estimator, and the actual values of the measured variables 
did not change so much as to go outside of this acceptable 
range in between updates, then the whole system can 
continue communication through clock frequency change. 

To realize this idea, it is first necessary to generate 
periodic measurement updates. Basic measurement updates 
can be achieved by restarting both the frequency ratio and 
detection interval measurement circuits (same circuits in the 
Even Odd Synchronizer) each time they finish a 
measurement. Each time these circuits finish, they will 
provide updated measurements to the system, allowing it to 
adapt as clocks change. Unfortunately, the frequency of 
these updates is limited by the number of cycles the circuits 
need to finish the measurement. 

To assess the adequacy of this design, the maximum 
speed that a clock can change in frequency in between 
updates may be calculated. This is the limiting factor that 
might prevent this design from practical application. If the 
measured fractions have b bits, then the range of inaccuracy 
is ±2-(b+1). A typical system might have a b of 10, therefore 
allowing for a variation of ± 0.000488. If we assume that 
both clocks are 1GHz, for the sake of illustration, then this 
means that one of these two clocks may change its 
frequency ±488 kHz and still stay within the measured 
range. 

The time between updates is also determined based on 
the number of bits used to represent the measured fractions. 
This is because the number of bits determines the size of the 
counters that must overflow in the measurement blocks. 
Time between measurements is equal to 2b receiver clock 
cycles, i.e. we must wait 210 = 1024 cycles in between each 
update for our typical system. This may also be called the 
cold start time, since this time must be spent on start up to 
begin estimating phases. When N measurement blocks are 
used the time between updates is (cold start time / N) as 
shown in Figure 3. 

It is important to note that the measured values in each 
update will be based on the 1024 cycles before the update 
(the period which the system was measuring).  As a result, 
these updates do not represent the frequency ratio and 
detection interval value at the exact time of the update. If we 
assume that the clock frequency is changing at a constant 
speed between updates, each measured update will represent 



the frequency ratio and detection interval exactly half way 
between the start and stop of measurement. This measured 
value is used by the system until the next update.  The time 
that the frequency needs to stay in the acceptable range is 
(time between updates) + (time between updates/2). For our 
typical system, we know that the receiver frequency needs to 
stay in the acceptable range for 1536 cycles. While this may 
be acceptable for some applications, others require faster 
frequency change.  This necessitates faster measurement 
updates.

Figure 3: Continuous Measurement Strategy at Doubled 
Rate 

Faster measurement updates may be achieved by 
including multiple measurement circuits in the design. These 
circuits are started in a staggered fashion and run in parallel, 
effectively hiding measurement latency as shown in Figure 
3. Both the frequency ratio and detection interval can be 
measured in this manner. 

Figure 4: Continuous Frequency Measurement Circuit 

Figure 5: Continuous Frequency Measurement Timing 
The circuit used to achieve this technique is shown in 

Figure 4 while the timing diagram in Figure 5 shows its 
behavior. The circuit is started with a StartSystem pulse, 
which initiates Measurement Circuit 0. This start pulse also 
enters a delay counter which delays the start signal by half 
of the measurement completion time (Interval 1). After this 
delay, Measurement Circuit 1 is started. Eventually, 
Measurement Circuit 0 finishes (measurement time is shown 
by   Interval 2) and its output value is posted to Update as 
the most recent line is pulled low. This completion causes 
start0 to be asserted, beginning the process all over again. 

After time interval 3, Measurement Circuit 1 finishes. This 
parallel circuit allows for updates to occur twice as fast as a 
single measurement structure, doubling the maximum 
frequency ramp speed. This method could be used for any 
number of additional measurement circuits, eventually 
allowing for an updated measurement every clock cycle if so 
desired. 

2.2 Instant Frequency Change 
In systems where clocks may change frequency very 

quickly, such as when digital frequency dividers are used,   
even parallel measurement circuits may not be fast enough. 
In this section, we present a solution which directly informs 
the predictive CDI when frequencies change and what they 
are changing to. When a frequency transition takes place the 
CDI pauses communication, reads in the new frequency 
value, calculates the new frequency ratio and detection 
interval directly (instead of measuring), and then waits for 
both domains to track before resuming communication. 

Figure 6: High Level Diagram of Fast DVFS Strategy 
The system shown in Figure 6 uses a number of control 

signals to communicate the status during the process of a 
fast frequency change. Each DVFS controller supplies a 
clock (generated from the controller’s clock source) and 
information about the clock to the Prediction Based CDI. 
This information could either be the specific frequency of 
the supplied clock or a code representing which frequency 
the clock currently is.  

Each DVFS controller also has an output for requesting a 
frequency transition (rclktran, tclktran) and an input so that 
the controller knows when the opposite clock domain has 
acknowledged the frequency transition (tdomacktclktran, 
rdomackrclktran). These signals cross the clock domain 
boundary by using brute force synchronizers since the 
predictive CDI is off-line during frequency transitions. 
There are also signals for rtracking representing when the 
receive domain is ready. The two domains’ clocks, data, and 
flow control signals (shown in bold at the bottom of the 



figure)   are the signals used during normal operation when 
communication is resumed. 

Figure 7: Fast Change in Receiver Clock Frequency Timing 
Granted, this technique does require the CDI to pause 

communication for a certain period of time unlike the 
continuous measurement technique. To understand how long 
communication would need to be paused, we consider the 
timing behavior of the system. As seen in Figure 7, the 
receive domain informs the system of its need to  change its 
frequency by asserting rclktran at time 1 as well as updating 
its rclkinfo to inform the CDI of the needed running 
frequency.  

The rclktran signal propagates through the brute force 
synchronizer to the transmit domain by time 2. At this time 
the transmit domain acknowledges the change via a direct 
connection to the synchronized transition request signal and 
de-asserts its tracking flag (ttracking). Naturally this implies 
that both domains are no longer tracking and communication 
is paused. During this period transmitready is set low and 
tdata is kept at a “null” value which the receive domain will 
ignore. 

For the system to resume, the following steps are taken. 
First, when the transmit domain acknowledges the change in 
frequency (time 2), it samples the new rclk info. This data is 
known to be constant since it has been a number of 
synchronizer cycles since the last change (the tdomrclktran
signal acts as a data ready signal). The data is then used to 
calculate both the frequency ratio and detection interval 
necessary for phase prediction in the transmit domain. The 
edge detector in the transmit domain is also disabled to 
prevent the system from re-tracking before the receiver’s 
clock is actually changed.  

When the asserted ackrclktran signal is successfully 
synchronized to the receiver domain at time 3, the receiver 
DVFS controller completes the sequence by changing the 
receiver clock’s frequency. This acknowledgement also 
triggers the receive domain to calculate its frequency ratio 
and detection interval which has been updated based on the 
new rclk information. With a new rclk, the phase estimator 
needs to re-track, so the rtracking flag is also de-asserted. 
Having completed its transition, the receiver clock’s rclktran
signal is de-asserted. At time 4 the de-assertion of both the 
rclktran and rtracking signals are received in the transmit 
domain. By this time instant, transmit domain knows that 
the receiver clock has been changed which prompts the 
transmit side phase detector to be re-enabled. 

Once the receiver clock has been changed and the phase 
estimators are enabled in both domains, it is   necessary to 

wait for the two domains to begin tracking. At time 5 the 
transmit domain begins tracking and at time 6 the receive 
domain begins tracking. When at time 7 the rtracking signal 
is synchronized to the transmit domain, the transmitter can 
resume communication.  

The obvious question is how much time is necessary 
between stopping and starting of communication after a 
frequency change. The time range where communication is 
stopped starts at time 2 and restarts at time 7. During this 
time, control signals are passed between clock domains and 
the system waits for both domains to start tracking. 
Although different frequencies change the exact delay, the 
delay from two synchronizers comprise 8 cycles if 4 cycle 
synchronizers are assumed. Our experiments have shown 
that waiting for tracking rarely exceeds 12 cycles. This 
means that the system can re-start communication after only 
20 cycles. This is a considerable improvement relative to the 
thousand cycles necessary for full re-measurement. 

3. The Locally Controlled CDI  
It is important to note that the usefulness of these DVFS 

enabled phase prediction techniques is not limited to the 
EOPS. Here, we describe an alternative Clock Domain 
Interface (CDI) which uses these DVFS enabled predictive 
phase estimator circuits. In this CDI, flow control is 
managed locally with no need for a FIFO.  

Figure 8: The Locally Controlled CDI 
As seen in Figure 8, the Locally Controlled CDI uses a 

phase estimator for each domain. The phase estimates are 
then sent to the flow management logic which in turn 
controls the flow of data out of the transmit domain and into 
the receive domain. The clouds represent the entire transmit 
and receive domains respectively. The counter in the 
transmit domain and shift register in the receive domain are 
only used for testing the system. 

The Locally Controlled CDI has two different modes of 
operation. One protocol is used when the receiver clock is 
faster while another protocol is used when the transmit clock 
is faster. The system decides which of these two protocols 
should be active by checking the ratio between the two 
frequencies provided by the phase estimator (this is one of 
the necessary values provided by the DVFS techniques 
shown in previous sections).  



Figure 9: CDI protocol when the receive clock is fastest 
Flow control and metastability avoidance is all contained 

within the receive domain when the receive clock is fastest. 
This protocol generates three control signals: Meta Possible,
Double Data, and Renable. The signal Meta Possible
informs the system when sampling on a particular edge has 
the risk of resulting in metastability. To avoid metastability 
the system needs to avoid sampling data when that data is 
changing. This is defined as the case when the rising edge of 
the transmit clock violates the receive domain’s setup time 
or hold time. This situation can be avoided by checking the 
calculated phase estimates while preparing to sample.  

As described in previous sections, the prediction circuits 
give upper bound and lower bound phase estimates as binary 
fractions of the transmit clock period. This binary fraction 
includes bits to the left and to the right of the decimal point. 
The bits to the right of the decimal point represent where the 
rising edge of the receive clock falls, within a single 
transmit clock cycle. The flow control logic checks these 
bits to see if the phase estimate overlaps the predefined keep 
out region around the rising edge. Figure 10 shows examples 
of safe sampling (a) and unsafe sampling (b) on transmit 
domain phase circles. The X and 1-X terms here are 
predefined as the keep out region (the setup and hold time). 
When there is overlap, the Meta Possible signal is asserted 
since the edges may be too close. This can be seen in Figure 
9 where the ovals point out the transmit clock and receive 
clock are too close. Each of these edges is accompanied by a 
high Meta Possible signal. 

Figure 10: Phase estimation for safety detection
Of course, flow control is also important for a CDI. In 

the case where the receive clock is fastest the flow control 
logic must prevent the receiver from sampling data that it 
has already sampled. This is accomplished with the Double 
Data signal. For this the bits to the left of the decimal point 
of the phase estimate are utilized. These bits represent which 
transmit clock cycle the possibly sampled data belongs to. 
To generate the Double Data signal, the phase from the 
current receive clock rising edge and the phase from the 
previous receive clock rising edge are compared. If the two 
phases are in the same transmit clock cycle, then the data 

was already sampled on the previous edge and there is no 
need to sample again. If both the Meta Possible and Double 
Data signals are low, then Renable is high and the receive 
domain knows that it is the right time to sample. 

Figure 11: CDI protocol when the transmit clock is fastest 
A different protocol is used if the transmit clock is faster 

than the receive domain (see Figure 11). For this protocol 
flow control signals are used in both domains. In the receive 
domain, metastability is predicted in the same way as 
previously described. Flow control is managed in the 
transmit domain for this protocol, setting Renable high as 
long as Meta Possible is low. 

In the transmit domain, both an enable signal as well as a 
Tnull signal are used. The tenable signal represents when the 
receive domain is ready for new data. This is managed in a 
similar manner to the Double Data signal in the receive 
clock faster protocol. If the phase estimates of the current 
transmit clock edge and the previous transmit clock edge are 
in the same receive clock cycle, then the receive domain has 
not yet had the chance to sample the data.  

Metastability management in the transmit domain is 
handled differently for this protocol. Data would be lost if 
the transmit and receive domains disagreed about if a given 
receive edge would cause metastability. Disagreement is 
possible since the domains do not send control signals 
between domains during operation and manage their own 
phase estimators with slightly different properties. To 
prevent this problem from occurring, the transmit domain 
nulls out data before and after an edge that it detects may 
possibly cause metastability. The transmit domain also 
increases its keep-out region slightly to make sure that the 
transmit domain will always be more protective of possible 
metastability than the receive domain. This way the only 
case for a disagreement is when the transmit domain expects 
metastability but the receive domain does not. In this 
situation the receive domain only sees the null value and 
knows to ignore this data which is guaranteed to be safe.  

It is also important to note one of the weaknesses of this 
CDI. This CDI cannot be used when the transmitter and 
receiver clocks are rationally related as tracking is 
impossible when clocks are out of phase since rising edges 
will never occur close to each other. With no rising edges 
close to each other the system can never calibrate. This 
limitation restricts the range of frequencies that the CDI can 
be used with. Also, for the purposes of simplification, the 
implemented CDI is limited to working with clocks that are 
no more than twice the other or less than half the other. This 



could be changed however by including more bits to the left 
of the decimal point when calculating phase estimates and 
making few changes to the logic. 

4. Discussion 
These designs have been implemented and verified in 

Verilog RTL. Synthesis was performed using TSMC 28nm 
technology standard cells. The test setup consisted of a 5 bit 
counter in the transmit domain to generate sample data and a 
shift register in the receive domain to hold the incoming data 
(as shown in Figure 8). The transmit clock’s frequency was 
set at 1GHz while the receive frequency was swept from 
500MHz to 2GHz at 1GHz intervals. This was repeated 
twice, once with gradual changes in frequency using the 
circuit shown in Figure 4, and then once with instant 
changes in frequency using the circuit shown in Figure 6. 

Setup and hold time checks were used to verify no risk of 
metastability during all of operation. The contents of the 
shift register were monitored to verify that the data was 
passed without doubles or misses. Transfer of data was 
successful with the notable exception of rationally-related 
frequencies. Completion time was also measured to 
determine the throughput of the system.  
Table 1: CDI Comparison 

Metric Brute Force  EOPS  Locally Controlled 
Latency 4 cycles ~0.5 cycles ~0.5 cycles 
MTBF Limited ~Infinite ~Infinite 
Layout Size 6606 μm2 4473 μm2 3122 μm2

Throughput Maximum Maximum ~15% Reduction 
As shown in Table 1, when compared to the Brute force 

CDI (an asynchronous FIFO using brute force 
synchronizers) and the EOPS CDI (an asynchronous FIFO 
using the EOPS), the Locally Controlled CDI has the best 
latency, Mean Time Between Failures (MTBF) and layout 
size. Both the EOPS CDI and the Locally Controlled CDI 
have the same latency and MTBF since they both use the 
same phase prediction circuits. The average latency of half a 
cycle is because the only waiting time is between the rising 
edge of the transmit clock with new data and the rising edge 
of the receive clock sampling this new data.  

The MTBF for the EOPS CDI and the Locally 
Controlled CDI is near perfect since the only brute force 
synchronizers (the source for a possible metastability 
failure) in these CDIs are in the measurement circuits. These 
brute force synchronizers are out of the critical path and 
therefore can be made arbitrarily long to achieve almost 
infinite MTBF. Since the critical path for the brute force 
CDI goes directly through its brute force synchronizer it 
must make a compromise between reliability and latency 
resulting in a sub-optimal MTBF. In terms of layout area, 
the EOPS CDI is smaller than the brute force CDI since its 
reduced latency allows it to have a smaller FIFO, while the 
Locally Controlled CDI has no need for a FIFO and is 
therefore even smaller. The one disadvantage to the Locally 
Controlled CDI is its reduction in throughput, which was 
verified experimentally. This reduction in throughput is due 
to the system not sampling data when metastability is 
possible, effectively missing a cycle. 

It should also be mentioned that while the Brute force 
CDI demonstrates poor latency, MTBF, and area, it does not 

require any extra circuitry for changes in frequency. Area 
estimates shown in Table 1 do not include area for extra 
measurement circuits for gradual frequency changes. Each 
additional measurement circuit (including both frequency 
ratio and detection interval) adds 306 μm2 to the layout size.  

The effect of jitter in each domain on the system must 
also be considered. If precautions are not taken, it is possible 
for phase predictions to exceed tolerance. If the nature of the 
jitter is known however, then this can be prevented by 
artificially increasing the size of the measured detection 
interval [5]. This technique applies for all uses of the phase 
prediction circuits (EOPS, Locally Controlled CDI, etc.). 

The Locally Controlled CDI’s inability to operate with 
clocks that are rationally related might also be mitigated. To 
allow for operation over a wider range of frequencies, the 
Locally Controlled CDI could be augmented with a CDI 
specifically design for rationally related frequencies [2][3]. 
Also, the work presented in this paper manages changes in 
clock frequencies, not changes in voltage. For this, level 
shifters must be applied to incoming and outgoing signals. 

5. Conclusions 
The DVFS techniques proposed in this paper may be 

applied to current systems (such as the EOPS) to enable low 
latency, high throughput, and high reliability inter-clock 
domain communication in DVFS enabled GALS SoCs. Due 
to their digital nature, these circuits are suitable for standard 
design and verification flows (including PVT management). 
Interruptions due to frequency changes are either non-
existent (for gradual changes) or less than 20 cycles (for fast 
or “instant” frequency changes) for the upgraded EOPS CDI 
or the new Locally Controlled CDI. This reduction in GALS 
system overhead improves system performance as a whole, 
and may allow for the use of more aggressive low-level 
DVFS strategies.  

In addition, the CDI presented in this paper exhibits low 
latency, high reliability, and a small layout footprint, while 
taking a minor reduction in throughput. This CDI is well 
suited for applications where latency, reliability, and size are 
critical but throughput is of lesser importance, such as in 
networks for on chip monitoring. 

6. References 
[1] Ginosar, R., "Metastability and Synchronizers: A 
Tutorial," IEEE Design & Test of Computers, 2011. 
[2] Chabloz, J., Hemani, A., "Low-Latency Maximal-
Throughput Communication Interfaces for Rationally 
Related Clock Domains," IEEE Tran VLSI Systems, 2011. 
[3] Wang, R., Wang, H., Fan, B., Yang, L., "RIRI scheme: 
A robust instant-responding ratiochronous interface with 
zero-latency penalty," ISCAS, 2011. 
[4] Frank, U., Kapshitz, T., and Ginosar, R., “A Predictive 
Synchronizer for Periodic Clock Domains,” J. Formal 
Methods in System Design, 2006. 
[5] Dally, W., Tell, S., “The Even/Odd Synchronizer: A 
Fast, All-Digital Periodic Synchronizer,” ASYNC, 2010. 
[6] Yakovlev, A., Vivet, P., Renaudin, M., "Advances in 
asynchronous logic: From principles to GALS & NoC, 
recent industry applications, and commercial CAD 
tools," DATE, 2013. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


