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Abstract—Hardware support for deep convolutional neural
networks (CNNs) is critical to advanced computer vision
in mobile and embedded devices. Current designs, however,
accelerate generic CNNs; they do not exploit the unique
characteristics of real-time vision. We propose to use the
temporal redundancy in natural video to avoid unnecessary
computation on most frames. A new algorithm, activation
motion compensation, detects changes in the visual input and
incrementally updates a previously-computed activation. The
technique takes inspiration from video compression and applies
well-known motion estimation techniques to adapt to visual
changes. We use an adaptive key frame rate to control the
trade-off between efficiency and vision quality as the input
changes. We implement the technique in hardware as an
extension to state-of-the-art CNN accelerator designs. The new
unit reduces the average energy per frame by 54%, 62%, and
87% for three CNNs with less than 1% loss in vision accuracy.

Keywords-convolutional neural networks; computer vision;
video compression; application specific integrated circuits;
computer architecture, hardware acceleration;

I. INTRODUCTION

Deep convolutional neural networks (CNNs) have rev-
olutionized computer vision. A commensurate flurry of
architecture work has designed efficient hardware CNN
accelerators [1–4] targeting resource-strapped mobile and
embedded systems. These designs, however, target generic
convolutional networks: they do not exploit any domain-
specific characteristics of embedded vision to improve CNN
execution. This paper specializes CNN hardware for real-
time vision on live video, enabling efficiency benefits that
are unavailable to generic accelerators.

The key insight is that live vision is temporally redundant.
In an input video, every frame differs only slightly from
previous frames. A generic CNN accelerator, however, runs
nearly identical, equally expensive computations for every
frame. This traditional strategy wastes work to compute
similar outputs for visually similar inputs. Existing work
has also shown that CNNs are naturally approximate. Sparse
accelerators, for example, improve efficiency with negligible
impact on CNN output by rounding small network weights
down to zero [3–6].

To exploit both temporal redundancy and approximation
in real-time vision, we present an approximately incremental

strategy for CNN execution. This strategy builds on ideas
in incremental computation [7, 8]. To process an initial
input frame, the strategy runs the full CNN and records
both the input pixels and the output activation data. On
subsequent frames, it detects changes in the pixels with
respect to the saved input and uses these changes to update
the saved output. The incremental update is much cheaper
than full CNN execution, so the performance and energy
benefits outweigh the cost of detecting input changes. The
updated output, however, need not match the full CNN
execution exactly; instead, the incremental update is a close
approximation of the original CNN layers. We apply ideas
from approximate computing [9–11] to adaptively control
the trade-off between vision accuracy and resource efficiency
by reverting to full computation when the prediction error
is likely to be high.

Our algorithm, activation motion compensation (AMC),
takes inspiration from video codecs [12] and literature on
exploiting optical flow for computer vision [13, 14]. AMC
captures visual motion in the input video and uses it to
transform saved CNN activations. When pixels move in the
input scene, AMC moves the corresponding values in the
activation data. The algorithm skips a series of layers in the
CNN by predicting their output and then invokes the remain-
ing layers to compute the final vision result. We describe
the mathematical relationship between pixel motion and
convolutional layers and develop a new, hardware-optimized
motion estimation algorithm to exploit this relationship.

We design a new hardware module, the Embedded Vision
Accelerator Accelerator (EVA2*), that implements the AMC
algorithm. Instead of designing a CNN accelerator from
scratch, we show how to apply EVA2 to any generic CNN
accelerator to improve its efficiency for live computer vision.
EVA2 adds new logic and memories to a baseline accelerator
to skip the majority of CNN layer executions for the majority
of frames. EVA2 uses an adaptive control scheme to decide
which frames to run precisely.

We implement EVA2 and synthesize the design on a 65 nm
process. We augment state-of-the-art designs for accelerating
convolutional and fully-connected layers [2, 6] and find that

*Pronounced ee-vah squared.
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Figure 1: Activation motion compensation (AMC) runs the CNN precisely for periodic key frames and uses an approximately
incremental update for more frequent predicted frames. For predicted frames, the algorithm estimates motion in the input
and uses the resulting vector field to update a saved CNN activation from the last key frame.

EVA2 makes up 3.5% of a full ASIC’s area. On three CNN-
based vision workloads, using EVA2 reduces the average
energy cost per frame by 54%, 62%, and 87% and decreases
the average frame latency by similar amounts with less than
1% loss in vision task accuracy.

II. ACTIVATION MOTION COMPENSATION

This section introduces activation motion compensation
(AMC), our strategy for exploiting temporal redundancy in
CNNs for efficient real-time computer vision. The central
idea is to use saved outputs from earlier key frames to
predict the output for later predicted frames. As in traditional
incremental computing [7, 8], the challenge is finding an al-
gorithm for updating saved results that is much cheaper than
running the entire computation “from scratch” on the new
input. Unlike traditional strategies, however, our approach
for vision is approximately incremental: the updated output
need not match the original output values precisely. Instead,
predicted frames need only yield equivalently high vision
accuracy results.

One natural strategy for approximately incremental CNN
execution would exploit the differentiability of neural net-
work layers. If f (x) is a layer, then there must be another
function df such that f (x+dx)≈ f (x)+df (dx). Delta net-
works operate by storing the old activation, f (x), for every
layer, computing df (dx) for new layers, and adding it to the
stored data [15, 16]. While delta updates are straightforward
to implement, they do not address the primary efficiency
bottlenecks in CNN execution. First, the hardware must store
the activation data for every network layer to apply per-layer
deltas, significantly increasing the memory requirements for
CNN execution. Second, to compute df (dx) for every layer,
the hardware must load the full set of model weights, and
previous work shows that the cost of loading weights can
dominate the computation cost in CNNs [2, 17]. Finally,
using pixelwise derivatives to represent changes in video
frames assumes that individual pixels change their color

slowly over time. If the camera pans or objects move in
the scene, however, most pixels will change abruptly.

Instead of relying on a pixel-level derivative, our tech-
nique uses visual motion in the input scene. The intuition
is the same as in video compression: most frames are
approximately equal to the previous frame with some blocks
of pixels moved around. AMC detects pixel motion and
compensates for it in the output of a single target layer
in the CNN. AMC builds on recent computer vision work
to warp the target CNN activation data based on motion
information [13]. Unlike delta updating, AMC bypasses the
computation and memory accesses for an entire sequence of
CNN layers.

A. AMC Overview

Figure 1 illustrates AMC’s approximately incremental
execution strategy for real-time vision using CNNs. AMC
processes the input video as as a mixture of key frames,
which undergo full and precise CNN execution, and pre-
dicted frames, which use cheaper, approximate execution.
AMC saves intermediate results during key frames and incre-
mentally updates them for predicted frames. Section II-C4
describes how to decide which frames should be key frames.

To apply the strategy to a new CNN architecture, the
system splits the CNN’s series of layers into two contiguous
regions: a larger prefix that only executes for key frames,
and a smaller suffix that executes on every frame. The final
layer in the prefix is called the target layer: AMC saves
the output from this layer during key frames and predicts its
output during predicted frames. Intuitively, the convolutional
and pooling layers in the prefix have a spatial relationship
to the input, while the suffix contains fully-connected lay-
ers and other computations where scene motion can have
unpredictable effects. The prefix typically performs more
generic feature extraction, while the functionality in later
layers varies more between vision tasks [18]. Section II-C5
describes how to choose the target layer in more detail.

During key frames, AMC stores the network’s input
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Figure 2: A convolutional layer applies filters to regions
in the input. The input region corresponding to a given
activation value is called its receptive field.
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Figure 3: Convolutional layers and translations are commu-
tative, so f (δ (x)) = δ ′( f (x)) where δ ′ is a scaled version
of the translation δ .

and the target layer’s output for reuse during predicted
frames. While the input image is typically small, CNN
activations can have high dimensionality and occupy mul-
tiple megabytes [3]. Section II-C2 describes how to exploit
activation sparsity to efficiently store key frame outputs.

During predicted frames, AMC detects the motion be-
tween the last stored key frame and the new input frame.
Motion estimation is the problem of computing a vector
field describing the visual displacement between two input
frames. Motion estimation algorithms offer different trade-
offs between granularity, accuracy, and efficiency [19–25].
AMC requires an efficient motion estimation technique that
is aligned with the CNN’s convolutional structure. Sec-
tion II-C1 describes receptive field block motion estimation
(RFBME), our new algorithm optimized for the hardware
implementation of AMC.

Next, we describe mathematically how AMC updates
stored activation data using motion information. Then, Sec-
tion II-C describes the complete implementation of AMC.

B. Warping CNN Activations

The core challenge in AMC is accurately updating saved
activation data at the target layer according to input motion.
Activation warping, as shown in Figure 1, takes in an
old activation and a vector field and produces an updated
activation. To perform warping, AMC needs to convert the
vector field describing motion in the input image into a
corresponding vector field for the target activation data. This
conversion depends on the structure of convolutional layers,
illustrated in Figure 2. Convolutional layers scan over the

input using a fixed stride and compute the dot product of a
filter matrix and a region in the input to produce each output
value. This input region corresponding to each output value
is called its receptive field. By propagating this structure
through multiple convolutional layers, a receptive field in
the input pixels can be defined for every activation value
at every layer. Using receptive fields, we can derive the
relationship between motion in the input image and in the
target activation layer.

Convolutions and translations commute. The key insight is
that, when the pixels in a receptive field move, they cause
their corresponding activation value in the target layer to
move by a similar amount. Mathematically, convolutional
layers commute with translation: translating (i.e., moving)
pixels in the input and then applying a convolution is the
same as applying the convolution to the original pixels and
then translating its output. (See Figure 3.)

Let f be a convolutional layer in a CNN, let x be an
input image, and let δ be the vector field describing a set
of translations in x. We define δ (x) to be the new image
produced by translating pixels in x according to the vector
field δ . We can also produce a new vector field, δ ′, by
scaling δ by the stride of the convolution: for a convolutional
layer with stride s, a distance d in the input is equivalent to
a distance d

s in the output. The commutativity of translations
and convolutions means that:

f (δ (x)) = δ
′( f (x))

In AMC, x is a key frame and f (x) is the target activation
for that frame. If δ (x) is a subsequent input frame, AMC
can use the saved output f (x) and compute δ ′( f (x)) instead
of running the full computation f on the new input.

Figure 4 shows an example convolution. If Figure 4a is
a key frame, then Figure 4b shows a translation of the key
frame to the right by 2 pixels. The output of that convolution
is translated by the same amount in the same direction.
The max-pooling output translates by only 1 pixel because
pooling reduces the output resolution.

Sources of approximation. In this model, activation warping
is perfectly precise: an incremental update produces the same
result as the full CNN computation. However, the formula-
tion relies on strong assumptions that do not generally hold
for real video and complete CNNs. To the extent that these
conditions are violated, AMC is approximate.

To clarify the sources of approximation in AMC, we
list sufficient conditions under which AMC is precise. We
demonstrate the conditions by example and describe how
AMC mitigates—but does not eliminate—errors when the
conditions are unmet. AMC relies on the inherent resilience
in neural networks to tolerate the remaining imprecision.

Condition 1: Perfect motion estimation. AMC is precise
when motion estimation perfectly captures the changes in the
input. In other words, given a key frame x0 and a predicted
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(a) An original image with a 3×3 convolutional layer and a 2×2
max-pooling layer applied, each with a stride (s) of 1. The inset
shows the convolution’s filter.
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(b) The image in (a) translated to the right by 2 pixels. The outputs
from the convolutional and pooling layers are similarly translated
by 2 and 1 pixels respectively. Translation commutes precisely with
the layers (accounting for the 2× loss in resolution from pooling).
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(c) The image in (a) with a “new pixel” that may have been
revealed by de-occlusion. The new image is not a translation of
the old image, so the outputs also have new values that cannot be
reconstructed by translations.

1 0 0
0 0 1
0 0 0

0 1 0
0 1 0
0 1 0

1 0 1
1 0 1
0 0 1

 conv
3⨉3, s=1 1 1

1 1

maxpool
2⨉2, s=1

(d) The image in (a) with a single pixel translated. Because an
entire 3×3 receptive field is not translated consistently, the output
of the convolution is not a perfect translation of the original.
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(e) The image in (a) translated to the right by 1 pixel. The output
from the convolutional layer is translated, but the pooling layer
produces a different output. Translation commutes precisely with
the first layer but not the second.

Figure 4: An example convolutional layer and pooling layer
applied to transformations of an input image.

frame x1, motion estimation always finds a vector field δ

such that δ (x0) = x1 exactly. In reality, motion estimation
algorithms are imperfect and not all changes between frames
are attributable to motion.

For example, lighting changes and de-occlusion cause
“new pixels” that are not present in the previous frame.
Figure 4c shows an modified version of the input in Fig-
ure 4a with a new pixel. The output of the convolution,
correspondingly, is not a translation of the original output.

Condition 2: Convolution-aligned motion. To perfectly
translate the pixel vector field δ into an activation vector
field δ ′, AMC assumes that blocks of pixels in receptive
fields move in increments according to the convolution’s

stride. If a vector in δ has magnitude d, the corresponding
vector in δ ′ has magnitude d

s where s is the convolutional
layer’s stride. If d is not a multiple of s, the translation
ends at a fractional coordinate in the activation and perfect
reconstruction is impossible. Similarly, if pixels within a
single receptive field move differently, a translation in the
activation cannot perfectly capture the change.

Figure 4d shows a version of Figure 4a with a single pixel
translated. Because the translation’s granularity is smaller
than a receptive field, the output of the convolution is not a
perfect translation of its original output.

Condition 3: Nonlinearities preserve motion. Translation
is commutative with convolution, but CNNs have other kinds
of layers, such as pooling, that are not perfectly commu-
tative. For example, Figures 4b and 4e show translated
versions of the input in Figure 4a. In the first translation,
a max-pooling layer produces an output that is a perfect
translation of the original output. In the second, however,
the max-pooling layer creates a non-translated output.

Real video and real CNNs violate all three of these
conditions, so AMC’s activation warping is an approxi-
mation of plain CNN execution. The central challenge in
the design of the rest of the AMC algorithm is avoiding
and suppressing these potential errors. AMC’s adaptive key
frame selection (Section II-C4) mitigates motion estimation
errors by falling back to precise execution; interpolated
warping (Section II-C3) addresses unaligned motion; and
careful target layer selection (Section II-C5) avoids too much
error accumulation due to nonlinear layers.

C. Design Decisions for AMC

This section outlines our approaches to motion estimation,
activation storage, warp interpolation, key frame selection,
and target layer selection. AMC is a design space with a
range of possible choices for each of these factors. We
describe both the general requirements and the specific tactic
we use in our hardware implementation.

1) Efficient Motion Estimation. The first step in ex-
ecuting an AMC predicted frame is motion estimation.
Motion estimation takes two input frames and produces a
2D vector field describing the visual displacement between
the frames. Motion estimation algorithms in the literature
include block matching [19, 20], phase correlation in the
Fourier domain [21], traditional optical flow algorithms
such as Lucas–Kanade [22] and Horn–Schunck [23], and
deep learning methods [24, 25]. A primary difference is
the motion granularity: optical flow algorithms produce
dense, pixel-level vector fields, while block matching detects
coarser motion but can often be cheaper. Previous work on
exploiting motion for efficient vision has used pixel-level
optical flow [13]. For AMC, however, pixel-level motion
estimation yields unnecessary detail: activation warping can
only handle motion at the granularity of receptive fields.
Another alternative is to use the motion vectors stored in



compressed video data [26, 27], but real-time vision systems
can save energy by skipping the ISP and video codec [28]
to process uncompressed video streams.

Block matching algorithms, often used in video codecs,
work by taking a block of pixels and comparing it to a
window of nearby blocks in the reference (key) frame. The
location of the closest matching reference block determines
the motion vector for the block. Critical parameters include
the choice of search window, the search organization, and
the metric for comparing two candidate blocks [12].

We develop a new block matching algorithm, receptive
field block motion estimation (RFBME), that is specialized
for AMC. RFBME estimates the motion of entire receptive
fields. The resulting displacement vector for each input
receptive field maps to a corresponding displacement vector
for a value in the target activation. RFBME avoids redundant
work by dividing the input into square tiles whose size
is equal to the receptive field stride and reusing tile-level
differences. Section III-A describes the algorithm in detail
and its hardware implementation.

2) Compressed Activation Storage. AMC needs to store
the target activation data for the key frame so that subse-
quent predicted frames can reuse it. Activations for CNNs,
however, can be large: storing an activation naively would
require multiple megabytes of on-chip memory. To mitigate
storage costs, we exploit sparsity in CNN activations. Many
CNN accelerator proposals also exploit sparsity: most values
in CNN weights and activations are close to zero, so they
can be safely ignored without a significant impact on output
accuracy [2–4, 6]. We use the same property to avoid stor-
ing near-zero values. Section III-B describes our hardware
design for encoding and decoding sparse data.

3) Interpolated Warping. AMC’s activation warping step
takes a vector field δ and an old CNN activation and updates
the activation according to the translations in the vector
field δ ′. It works by scaling the magnitudes of the vector
field to match the dimensions of the activation data. This
scaling can produce vectors that are unaligned to activation
coordinates. To translate by a fractional distance, AMC
needs to interpolate the values of nearby activations.

There are a range of possible strategies for interpolation,
from cheap techniques, such as nearest neighbor and bi-
linear interpolation, to more computationally expensive but
accurate interpolation methods that preserve edge or gradient
boundaries. For this paper, we choose bilinear interpolation
to average neighboring pixels in 2D space while maintaining
high performance. In our experiments, bilinear interpolation
improves vision accuracy by 1–2% over nearest-neighbor
matching on average for one CNN benchmark (FasterM).

4) Selecting Key Frames. The primary control that AMC
has over vision accuracy and execution efficiency is the
allocation of key frames, which are both more expensive
and more accurate than predicted frames. Several strategies
exist to decide when to use each type of frame. The simplest

is a static key frame rate: every nth frame is a key frame, and
the rest are predicted frames. A adaptive strategy, however,
can allocate more key frames when the scene is chaotic and
unpredictable and fewer when AMC’s predictions are more
likely to succeed. To implement an adaptive strategy, the
accelerator must measure some feature of the input scene
that correlates with the probability of a successful AMC
prediction. We consider two possible features:

Pixel compensation error. AMC can produce a poor pre-
diction when the motion estimation fails to accurately reflect
the changes in the scene. To measure motion accuracy, we
can reuse the internal bookkeeping of a block matching
algorithm, which must compute the match error for each
pixel block in the scene. When the aggregate error across
all blocks is high, this strategy allocates a new key frame.
When large occlusions occur, for example, this method will
identify the inadequacy of the motion information.

Total motion magnitude. AMC’s predictions are more
accurate when there is less motion in the input scene. To
measure the amount of motion, this simple strategy sums
the magnitude of the vectors produced by motion estimation.
This policy uses a key frame when the total amount of
motion is large.

We implement and measure both techniques to compare
their effectiveness. Section IV-E5 quantitatively compares
their effects on overall accuracy.

5) Choosing the Target Layer. To apply AMC to a given
CNN, the system needs to choose a target layer. This choice
controls both AMC’s potential efficiency benefits and its
error rate. A later target layer lets AMC skip more compu-
tation during predicted frames, but a larger CNN prefix can
also compound the influence of layers that make activation
warping imperfect. Some kinds of layers, including fully-
connected layers, make activation warping impossible: they
have no 2D spatial structure and no meaningful relationship
with motion in the input. These non-spatial layers must
remain in the CNN suffix, after the target layer. Fortunately,
these non-spatial layers are typically located later in CNNs,
in the more task-specific segment of the network [18]. AMC
also cannot predict through stateful structures in recurrent
neural networks and LSTMs [29]. However, even these
specialized networks tend to contain early sets of stateless
convolutional layers for feature extraction [30, 31], where
AMC can apply.

As with key frame selection, the system can use a static or
adaptive policy to select the target layer. In our evaluation,
we measure the impact of choosing earlier and later CNN
layers, up to the last spatial layer (Section IV-E3) and find
that the accuracy difference is negligible. Therefore, we
implement AMC by statically targeting the last spatial layer.
Dynamic policies for choosing the target layer may be useful
future work if more complex networks demonstrate mean-
ingful differences in accuracy for different input frames.



Figure 5: EVA2 as a part of a complete vision processing
unit (VPU). CNNs consist primarily of convolutional layers
and fully-connected layers; this example VPU uses ASIC
designs from the architecture literature for each of the two
layer types [2, 6] and adds EVA2.

III. THE EMBEDDED VISION
ACCELERATOR ACCELERATOR

This section describes the design of the Embedded Vi-
sion Accelerator Accelerator (EVA2), our efficient hardware
implementation of activation motion compensation. EVA2 is
not a complete CNN accelerator. Instead, we design it to
complement existing deep learning accelerators. Figure 5
shows how EVA2 fits into a complete vision processing
unit (VPU) that also includes hardware for executing the
convolutional and fully-connected layers that make up the
bulk of CNN computation.

When the VPU processes a new frame, EVA2 performs
motion estimation and decides whether to run the computa-
tion as a key frame or a predicted frame. For key frames,
EVA2 sends the unmodified pixels to the layer accelerators
and invokes them to run the full CNN. For predicted frames,
EVA2 instead performs activation warping and invokes the
layer accelerators to compute the CNN suffix.

Figure 6 shows the high-level architecture of EVA2. Two
pixel buffers store video frames: one pixel buffer holds the
most recent key frame and the other holds the current input
frame. The diff tile producer and diff tile consumer cooperate
to run motion estimation. The key frame choice module uses
absolute pixel differences from the diff tile consumer to
decide whether to treat it as a key frame or a predicted
frame. For predicted frames, the diff tile consumer also sends
a motion vector field to the warp engine, which updates the
buffered key frame activation and sends the result to the
layer accelerators. For key frames, the layer choice module
toggles the muxing for the pixel buffers to reverse their roles
and sends the pixels to the layer accelerators. When the layer
accelerators send the target activation data back, EVA2 stores
it in its sparse key frame activation buffer.

EVA2 makes no assumptions about layer computation,
so only minor changes are required for any given CNN
accelerator: the layer accelerators need additional muxing
to receive activation inputs from EVA2 during predicted
frames, and the composite design needs to convert between
the accelerator’s native activation encoding and EVA2’s run-

Figure 6: The architecture of EVA2.

Figure 7: A set of example receptive fields with size 6,
stride 2, and padding 2. Nearby receptive fields overlap
significantly, and receptive fields near the edge overlap
enclose out-of-bounds pixels.

length activation encoding.
The rest of this section describes the design of EVA2’s

two main logic components: the motion estimation logic,
consisting of a diff tile producer and consumer, and the
motion compensation logic, consisting of the warp engine.

A. Receptive Field Block Motion Estimation

EVA2 implements receptive field block motion estimation
(RFBME), the specialized block matching algorithm moti-
vated in Section II-C1. The algorithm exploits two properties
of receptive fields for efficiency. First, the receptive field size
is typically much larger than its stride, so nearby receptive
fields overlap significantly and can reuse computation. Sec-
ond, layer padding means that receptive fields often exceed
the bounds of the image, and comparisons with these out-
of-bounds pixels are unnecessary.

Figure 7 shows an example input matrix where the re-
ceptive fields have size 6, stride 2, and padding 2. The
first receptive field (a) extends beyond the image bounds,
so only 16 of its 36 pixels are valid. The second receptive
field (b) entirely encloses the first receptive field’s valid
pixels, and the third (c) overlaps partially, in the range
x ∈ [2,3],y ∈ [0,3]. The receptive fields in this example
overlap on 2×2 tiles. In general, these tiles are s×s squares
where s is the receptive field’s stride. RFBME divides the
image and the receptive fields into tiles for comparison.
When receptive field size is not an integer multiple of the
stride, RFBME ignores partial tiles; we find these border
pixels do not significantly impact RFBME’s motion vectors.



The key insight is that the total absolute pixel difference
for a receptive field is the sum of the differences of its tiles,
and these tile differences are shared between many receptive
fields. For example, imagine that the algorithm has already
computed tile-level differences for all four tiles in the first
receptive field, shown in Figure 7a, at a given comparison
offset. The second receptive field (b) shares these same four
tiles and adds two more: the tiles labeled (2,0) and (2,1).
To compute a receptive field difference at the same offset,
the algorithm can reuse the previously-computed differences
for the first four tiles and add on differences for the two new
tiles. The potential benefit from this reuse depends linearly
on the number of pixels per tile. While the stride in this
example is small, the stride in later layers of modern CNNs
can be 16 or 32 pixels, which exponentially increases the
amount of shared pixels per tile.

To exploit this reuse of tile differences, our RFBME
microarchitecture uses a producer–consumer strategy. The
diff tile producer compares s× s tiles to produce tile-level
differences, and the diff tile consumer aggregates these
differences to compute receptive field differences. The con-
sumer then finds the minimum difference for each receptive
field; this determines its offset and the output of RFBME.
The next two sections describe each stage in detail.

1) Diff Tile Producer. For each tile, the diff tile producer
performs a search across the key frame according to a fixed
search stride and search radius. It uses a subsampled tra-
ditional exhaustive block matching search [12]. This search
considers all locations in the key frame that are aligned with
the search stride and are within the search radius from the
tile’s origin. A wider radius and a smaller stride yield higher
accuracy at the expense of more computation.

To perform the search, the diff tile producer first loads a
tile from the pixel buffer that contains the new input frame.
Then, it iterates over the valid (in-bounds) search offsets
in the old key frame according to the search parameters.
For each offset, the producer computes an absolute pixel
difference with the current tile using an adder tree. When
the search is complete, the producer moves on to the next
tile and starts the search again.

2) Diff Tile Consumer. The diff tile consumer receives tile
differences from the producer and coalesces them into full
receptive field differences. Figure 8 shows its architecture,
including memories for caching reused tiles and partial sums
and the pipelined adder trees for incremental updates. At
a high level, the consumer slides a receptive-field-sized
window across the frame and sums the tile differences within
the window. It adds new tiles at the sliding window’s leading
edge and subtracts old tiles from its trailing edge.

The consumer receives tile differences, streaming in row
by row, from the producer and stores them in a tile memory.
It buffers the incoming differences until it receives all the
tiles for a receptive field. For example, in Figure 7a, the
consumer calculates the first receptive field difference after
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Figure 8: The architecture of the diff tile consumer used for
receptive field block motion estimation (RFBME).

it receives the tile difference for (1,1) in the second row.
To enable computation reuse, the consumer stores each

new receptive field difference it computes in a past-sum
memory. To compute a new receptive field difference, it
loads the difference for the previous overlapping receptive
field, adds a new column tile differences, and subtracts the
old column of tile differences. For example, in Figure 7c, the
second receptive field difference is the sum of the differences
for the tiles (0,0) through (2,1). To calculate the difference
for the third receptive field, the consumer fetches this value
from the past-sum memory, adds the new tile column (3,0)
and (3,1), and subtracts the old tile column (0,0) and (0,1).
These rolling additions and subtractions avoid the need for
exhaustive sums in the steady state.

The consumer checks every new receptive field difference
against a single-entry min-check register to find the mini-
mum difference. When it finds a new minimum value, the
consumer writes the difference and offset back to the min-
check memory.

When the consumer finally finishes processing all the
receptive fields, it sends the minimum-difference offsets,
which constitute motion vectors, to the warp engine. It also
sends the minimum differences themselves to the key frame
choice module, which uses the total to assess the aggregate
quality of the block matching.

B. Warp Engine

The warp engine, shown in Figure 9, uses motion vectors
to update the stored activation data. Each motion vector
ends at a fractional destination between four neighboring
activation values. The warp engine’s job is to load this
neighborhood of activation values from its sparse activation
memory, feed them into a bilinear interpolator along with
the fractional bits of this motion vector, and send the result
to the layer accelerators to compute the CNN suffix.

The first step is to load the activation data. EVA2 uses
run-length encoding (RLE) for activations. RLE is critical
to enabling on-chip activation storage: for Faster16, for
example, sparse storage reduces memory requirements by
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more than 80%. However, the sparse data representation
complicates the task of loading individual values.

To load sets of four activation values, the warp engine uses
four sparsity decoder lanes (Figure 10) to skip zeros shared
among all four activations. Once activations are loaded into
the FIFO, each lane sends its zero gap for its first activation.
The min unit checks the zero gap in each lane and sends
the minimum to all of the lanes. Each lane then decrements
its zero gap by this amount, thereby jumping forward in
the channel. All lanes with zero gaps of zero after the
min subtraction provide their value register as input to the
bilinear interpolator. Lanes with positive zero gaps provide
zero as the input to the interpolator.

The warp engine feeds activation outputs from the sparsity
decoder lanes into the four weighting units in the bilinear
interpolator (shown in Figure 11). The interpolator is a
two-stage datapath that computes a 4-way weighted sum
using the activation values from the sparsity decoder lanes,
SDL 00 through SDL 11, and the fractional bits of a given
motion vector, (u,v). It computes the weighted sum:

SDL 00 · (1−u) · (1− v)+SDL 01 · (1−u) · v
+SDL 10 ·u · (1− v)+SDL 11 ·u · v
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Figure 11: The warp engine’s bilinear interpolation logic.

The interpolator computes wide intermediate values and then
shifts the final result back to a 16-bit fixed-point represen-
tation. The warp engine sends the output activations to the
layer accelerators to begin the CNN suffix computation.

IV. EVALUATION

This section studies EVA2’s impacts on vision accuracy
and efficiency and explores its implementation trade-offs.
We begin with a simple first-order model to build intuition
and then proceed to a full, empirical evaluation.

A. First-Order Efficiency Comparison

As Section II describes, AMC relies on a fundamental
efficiency trade-off: for predicted frames, it eliminates the
CNN prefix computation in exchange for incurring the
cost of motion estimation and compensation. The technique
succeeds if the former is much more expensive than the
latter. To provide intuition for this advantage, we build a
first-order model for these computation costs.

The cost of computation in the CNN prefix is dominated
by the multiply-and-accumulate operations (MACs) in the
convolutional layers. Each layer computes a number of
outputs dictated by its size and filter count (channels):

outputs = layer width× layer height×out channels

Each output is the weighted sum of inputs within an area
given by the filters’ width and height:

MACs per output = in channels×filter height×filter width



We sum the total number of MACs for all convolutional
layers in the prefix:

prefix MACs =
prefix layers

∑
i

outputsi×MACs per outputi

For a Faster16 prefix ending at layer conv5 3 on 1000×562
images, for example, the total is 1.7×1011 MACs.

AMC’s cost for predicted frames, in contrast, consists
mainly of motion estimation and compensation. The com-
pensation step is a simple linear-time interpolation, so mo-
tion estimation dominates. Our motion estimation algorithm,
RFBME (Section III-A), consists primarily of the additions
and subtractions that accumulate absolute pixel differences.
We first analyze an unoptimized variant of RFBME that
does not exploit tile-level computation reuse. The algorithm
sweeps a receptive field over a search region in the input
image with a given radius and stride. At each point, the
algorithm takes the difference for every pixel in the receptive
field’s area, so the total number of operations is given by:

unoptimized ops = (layer width× layer height)×(
2× search radius

search stride

)2

× rfield size2

The full RFBME algorithm reuses computations from tiles
whose size is equal to the receptive field stride. It then incurs
additional operations to combine the differences from tiles:

RFBME ops =
unoptimized ops

rfield stride2 +

(layer width× layer height)×
(

rfield size
rfield stride

)2

Again using Faster16 as an example, an unoptimized version
requires 3× 109 add operations while RFBME requires
1.3×107. Overall, for this example, AMC eliminates ∼1011

MACs in the CNN prefix and incurs only ∼107 additions for
motion estimation. AMC’s advantages stem from this large
difference between savings and overhead.

B. Experimental Setup

We implement EVA2 in RTL and synthesize our design us-
ing the Synopsys toolchain, including the Design Compiler,
IC Compiler, and PrimeTime, in the TSMC 65 nm process
technology. For energy and timing, we run simulations
of the full EVA2 design. The EVA2 implementation uses
eDRAM memories for the three larger buffers: the two pixel
buffers and the activation buffer. We use CACTI 6.5 [32]
to measure the memories’ power, performance, and area.
CACTI includes both an eDRAM model and an SRAM
model, which we use for EVA2’s smaller buffers.

Baseline accelerator. We apply EVA2 to a model of a
state-of-the-art deep learning accelerator based on recent
architecture papers. We model Eyeriss [2] for convolutional
layers and EIE [6] for fully-connected layers by gathering

Eyeriss (conv)

EIE (FC)

EVA²0 20 40 60

area (mm²)

Figure 12: Hardware area on a 65 nm process for EVA2 com-
pared to deep learning ASICs: Eyeriss [2] for convolutional
layers and EIE [6] for fully-connected layers.

published per-layer results from each paper. A journal paper
about Eyeriss [33] reports both power and latency numbers
for each layer in the VGG-16 [34] and AlexNet [35]
networks. The EIE results only include latency numbers for
these two networks, so we use the total design power to
estimate energy. Because EIE is implemented on a TSMC
45 nm process, we normalize by scaling up the power,
latency, and area for EIE according to the technology scaling
factor. Eyeriss is implemented in the same TSMC 65 nm
technology and thus requires no scaling. The total latency
and energy for a CNN execution in our model is the sum
of the individual layer costs. To quantify the cost of layers
not present in AlexNet and VGG-16, the model scales
the average layer costs based on the number of multiply–
accumulate operations required for each layer, which we find
to correlate closely with cost in both accelerators [36].

EVA2 hardware. Our RTL implementation of EVA2 meets
timing with a clock cycle of 7 ns, which was matched to the
memory cycle time. Figure 12 compares the area for EVA2

against the reported area for the convolutional layer acceler-
ator (Eyeriss) and the fully-connected accelerator (EIE). The
area for Eyeriss [2] is 12.2 mm2 on a 65 nm process, 78.6%
of which is occupied by its PEs. The area for EIE [6] is
40.8 mm2 on a 45 nm process; compensating for the process
difference, EIE would occupy approximately 58.9 mm2 on
a 65 nm process. EVA2 itself occupies 2.6 mm2, which is
3.5% of the overall area for the three units. Of this, the
eDRAM memory for the pixel buffers occupies 54.5% of
EVA2’s area, and the activation buffer occupies 16.0%.

Vision applications and dataset. We study three convolu-
tional neural networks. AlexNet [35] is an object classifica-
tion CNN consisting of 5 convolutional layers and 3 fully-
connected layers. Faster16 is an version of the Faster R-
CNN object detection network [37], which can use different
networks for its feature extraction phase, based on the VGG-
16 recognition network [34]. VGG-16 has 16 convolutional
layers; Faster R-CNN adds 3 convolutional layers and 4
fully-connected layers. FasterM is a different variant of
Faster R-CNN based on the “medium” CNN-M design from
Chatfield et al. [38]. CNN-M has only 5 convolutional layers,
so it is smaller and faster but less accurate than VGG-16.
We use standard vision metrics to assess EVA2’s impact on
accuracy. For our classification network, AlexNet, we use
top-1 accuracy; for the object detection networks, we use
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Figure 13: Performance (a) and energy (b) impact of EVA2.
Orig shows the baseline CNN execution, pred shows the cost
of predicted frames with EVA2, and avg shows the overall
average cost per frame.

mean average precision (mAP).
To train, validate, and test the CNNs, we use the Google

YouTube-BoundingBoxes dataset (YTBB) [39]. This dataset
consists of 240,000 videos annotated with object locations
and categories. It includes ground truth for both object
detection and frame classification. Training, testing, and
reference frames were all decoded at 30 frames per sec-
ond, corresponding to a 33 ms time gap between each
frame. The total dataset is more than five times larger than
ImageNet [40], so we use subsets to reduce the time for
training and testing. We train on the first 1⁄25 of the training
datasets (132,564 and 273,121 frames for detection and
classification, respectively). To evaluate during development,
we used a validation dataset consisting of the first 1⁄25 of each
of YTBB’s validation sets (17,849 and 34,024 frames for the
two tasks). Final results reported in this section use a fresh
test set consisting of the last 1⁄25 of YTBB’s validation sets.

We use hyperparameters without modification from open-
source Caffe [41] implementations of each network. All
three networks were initialized with weights pretrained on
ImageNet [40]. We train on a Xeon server using two
NVIDIA GTX Titan X Pascal GPUs.

C. Energy and Performance

Figure 13 depicts the energy savings that EVA2 offers
over the baseline CNN accelerator. The figure shows the
energy and latency cost for processing a single frame on the
baseline accelerator without EVA2, the average with EVA2

enabled, and the costs for EVA2’s predicted frames alone.
In these configurations, the degradation of the application’s
vision quality score is at most 1 percentage point. Even the
smallest savings are significant. For FasterM, the energy cost
with EVA2 is 46% of the baseline cost. The savings are
particularly dramatic for AlexNet because EVA2 adapts to
an extremely low key frame rate for classification; the next
section describes this effect in more detail.

The energy and latency for the fully-connected layers are
orders of magnitude smaller than for convolutional layers.

Network Config Acc. Keys Time (ms) Energy (mJ)

AlexNet

orig 65.1 100% 115.4 32.2
hi 65.1 22% 26.7 7.4

med 64.3 11% 14.5 4.0
lo 63.8 4% 5.9 1.6

Faster16

orig 60.1 100% 4370.1 1035.5
hi 60.0 60% 2664.8 631.3

med 59.4 36% 1673.6 396.4
lo 58.9 29% 1352.7 320.3

FasterM

orig 51.9 100% 492.3 116.7
hi 51.6 61% 327.2 77.4

med 51.3 37% 226.4 53.4
lo 50.4 29% 194.7 45.9

Table I: The trade-off space between accuracy and resource
efficiency with EVA2. For the original baseline and three
key configurations, we show the vision task accuracy score
(acc), the fraction of frames that are key frames (keys), and
the average latency and energy cost per frame.

This difference is due to EIE’s efficiency: it exploits the re-
dundancy in fully-connected layer weights to store the entire
model on chip [6]. This on-chip storage is reflected in EIE’s
low latency and energy and its large area requirement (see
Figure 12). Eyeriss’s use of off-chip DRAM is representative
of other CNN ASIC designs [3].

D. Accuracy–Efficiency Trade-Offs

To quantify AMC’s trade-off space between efficiency and
accuracy, we consider three configurations with different key
frame rates. Table I lists the accuracy and efficiency of three
configurations, hi, med, and lo, found by limiting the task
accuracy degradation on the validation set to <0.5%, <1%,
and <2%, respectively. We measure the average frame cost
and accuracy on a test set. The med configuration is also
shown in Figure 13.

The measured accuracy drop in every configuration is
small, and EVA2’s benefits improve as the accuracy con-
straint is loosened. For FasterM’s lo configuration, for exam-
ple, only 29% of the frames are key frames, so the average
energy cost per frame is only 39% of the baseline, but the
test-set accuracy drop remains less than 1.5%.

For AlexNet, extremely low key frame rates suffice.
Even in the hi configuration, which has no accuracy drop
within three significant figures, only 22% of frames are key
frames. The reason is that, unlike object detection results,
frame classification results change slowly over time. EVA2’s
adaptive key frame selection can help decide when a new
class may be likely, but the vast majority of frames have the
same class as the previous frame.

E. Design Choices

We characterize the impact of various design choices in
EVA2’s implementation of AMC.
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Figure 14: Accuracy impact of motion estimation tech-
niques. New key frame shows the ideal baseline accuracy
when computing the full CNN precisely, old key frame
shows the worst-case accuracy for using the previous key
frame without updating it at all, and the rest are motion
estimation algorithms. RFBME is our new algorithm.

1) Motion Compensation vs. Memoization. The first
choice when using AMC is whether it should use motion
compensation to update the key frame’s target activation
or just reuse the previous result without modification (i.e.,
simple memoization). The choice depends on the vision
task. Some applications, such as object detection, semantic
segmentation, and pose estimation are very sensitive to pixel
translation. For these applications, motion compensation
improves accuracy over memoization. This includes Faster16
and FasterM, which are object detection networks: Figure 14
illustrates motion compensation’s benefit over using the old
key frame. Other tasks, such as classification, are designed
to be insensitive to translation. For networks like AlexNet,
motion compensation does not improve its predictions and
can even degrade them by introducing noise. The accuracy
degradation for AlexNet with a key frame gap of 4891 ms
under simple memoization is only 1%, but enabling motion
compensation worsens the change to 5%. As a result, we
use memoization for AlexNet and full motion compensation
for FasterM and Faster16 in the rest of this evaluation.

2) Motion Estimation. Motion estimation is a key ingre-
dient for AMC. We compare our custom block-based motion
estimation algorithm, RFBME, with two pixel-level optical
flow techniques: the classic Lucas–Kanade algorithm [22]
and the FlowNet 2.0 CNN [25]. Unlike RFBME, both
algorithms produce pixel-level vector fields. To convert these
to receptive-field-level fields, we take the average vector
within each receptive field.

Figure 14 shows the overall mean average precision for
predicted frames in FasterM and Faster16 when using each
method. We show the error when predicting at two time
intervals from the key frame, 33 ms and 198 ms. At 33 ms,

Network Interval Early Target Late Target

AlexNet orig 63.52 63.52
4891 ms 49.95 53.64

Faster16
orig 60.4 60.4

33 ms 60.29 60.05
198 ms 55.44 57.48

FasterM
orig 51.85 51.85

33 ms 50.90 51.14
198 ms 48.77 49.61

Table II: The accuracy impact of targeting different layers
for EVA2’s prediction at various key frame intervals. The
orig rows show the baseline accuracy for each network.

Network Target Layer Accuracy

FasterM
No Retraining 51.02
Early Target 45.35
Late Target 47.82

Faster16
No Retraining 60.4
Early Target 61.30
Late Target 60.52

Table III: The accuracy impact of training to fine-tune
CNNs for execution on warped data. The accuracy column
shows the network’s score when processing plain, unwarped
activation data.

the predicted frame directly follows the key frame, so the
amount of motion is small. We choose 198 ms because it
consistently reveals accuracy degradation in the detection
benchmarks. In each case, RFBME yields either the best
or nearly the best accuracy. Because its efficiency does
not come at a disadvantage in vision accuracy, we choose
RFBME for our final EVA2 design.

3) Target Layer. The choice of the target layer for AMC
controls the amount of savings it can offer and its error.
We study the accuracy impact of selecting an early target
layer and a late target layer for each application. In each
case, the early layer is after the CNN’s first pooling layer,
and the late layer is the last spatial layer: the layer before
the first fully-connected layer or other computation would
prevent activation warping. Table II shows the accuracy for
AMC predicted frames when selecting each of these layers
as the target layer. In most cases, the accuracy for predicting
at the later layer is higher than for the earlier layer. The
exception is Faster16 at 33 ms, where the difference is small.
This improvement suggests that AMC’s activation updates
are accurate enough even for a large CNN prefix. We use the
later layer for each application in the rest of this evaluation.

4) Training on Warped Activation Data. While EVA2’s
predictions approximate “true” activation data, it may in-
troduce artifacts that interfere with the normal operation
of the CNN suffix. To counteract these artifacts, we can
retrain the CNN suffix on warped activation data. Table III
examines the impact of this retraining on FasterM and
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key frames and predicted frames is fixed at 198 ms for Faster16 and FasterM, and 4891 ms for AlexNet.

Faster16 by measuring the resulting accuracy on plain (key)
frames. For Faster16, the impact of retraining is small for
the early target layer and negligible for the later target layer.
For FasterM, retraining actually decreases accuracy on key
frames, although this may be due to its limited training
schedule in comparison with Faster16. We conclude that
additional training on warped data is unnecessary.

5) Key Frame Selection. AMC can choose adaptively
when to use expensive key frames and when to use cheap
predicted frames. Section II-C4 describes two possible met-
rics that EVA2 can use to choose key frames: RFBME match
error and total motion magnitude. Figure 15 compares the
vision accuracy for each strategy. In these experiments, we
fix a key frame interval and sweep the decision threshold,
then measure the resulting fraction of predicted frames and
the output accuracy. For a fair comparison between the two
metrics, each data point contains the same percentage of
predicted frames and key frames for each metric. A fixed
key frame rate would appear as a straight line from the 0%
predicted frames point to the 100%. The curves for both
metrics are above this fixed-rate line, so both are viable
strategies. We use the block error metric in our hardware
implementation because it is computationally cheap: block
errors are byproducts of RFBME.

V. RELATED WORK

EVA2 builds on a wave of recent architectural work on
efficient hardware for deep learning. For a survey of the
state of the art, see the tutorial by Sze et al. [42]. Com-
mercial hardware efforts include GPUs and manycores with
customized vector and low-precision instructions [43, 44].
In research, many recent ASICs target convolutional and
fully-connected layers [1, 2, 17, 45–48], as do some FPGA
designs [49–52]. Recently, accelerators have focused on ex-
ploiting sparsity in model weights and activations [3, 4, 6, 53]
and extreme quantization to ternary or binary values [54–
56]. EVA2’s benefits are orthogonal to these design choices.

Because it skips entire layers during forward execution, it
can apply to any underlying CNN accelerator architecture.

The AMC algorithm uses insights from video compres-
sion. Specifically, our RFBME algorithm builds on a large
body of work on the block-matching motion estimation
algorithms that are central to video codecs [19, 20, 57] and
their ASIC implementations [58, 59].

In vision, the most closely related work is deep feature
flow (DFF) [13, 14]. DFF is a neural network design that
grafts an optical flow network, FlowNet [24], onto a subset
of a feature network, ResNet [60], via a spatial warping
layer. The goal is similar to AMC: DFF uses motion
information to avoid computing a prefix of convolutional
layers involved in feature extraction. AMC’s focus on hard-
ware efficiency provides four key benefits over DFF. (1)
While RFBME performs coarse-grained computation at the
receptive-field level, DFF uses a full CNN (FlowNet) to
compute per-pixel motion, which is far more expensive.
(2) DFF uses a fixed key frame rate calibrated to the
“worst-case scenario” for scene motion. AMC’s adaptive
key frame rate spends less time and energy when frames are
more predictable. (3) AMC’s activation compression reduces
the intermediate data size enough for on-chip storage (80–
87%). (4) EVA2’s warp engine skips over zero entries when
performing interpolation, reducing the motion compensation
cost proportionally to the activations’ sparsity.

Other vision work has sought to exploit temporal redun-
dancy for efficiency. Zhang et al. leverage motion vectors
and residuals in compressed video to speed up super-
resolution algorithms [26]. Future work may adapt AMC
to replace RFBME with these precomputed motion vectors.
Clockwork convnets [61] exploit the observation that the val-
ues in deeper, more semantic layers change at a slower rate
than earlier, noisier layers. The execution strategy uses fixed
update rates, however, and does not adapt to changes in the
input video. Delta networks [15, 16] compute the temporal
derivative of the input and propagate the change through



a network, layer by layer. Using pixel-level derivatives,
however, is a poor match for real video data, where even
small movements can cause large changes in pixel values.
Section II discusses delta networks and their efficiency
drawbacks in more detail.

VI. CONCLUSION

Generic CNN accelerators leave efficiency on the table
when they run real-time computer vision workloads. While
this paper exploits temporal redundancy to avoid CNN layer
computation, AMC also suggests opportunities for savings
in the broader system. Future work can integrate camera
sensors that avoid spending energy to capture redundant
data [28, 62–64], and end-to-end visual applications can in-
form the system about which semantic changes are relevant
for their task. A change-oriented visual system could exploit
the motion vectors that hardware video codecs already
produce, as recent work has done for super-resolution [26].
Through holistic co-design, approximately incremental vi-
sion can enable systems that spend resources in proportion
to relevant events in the environment.
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